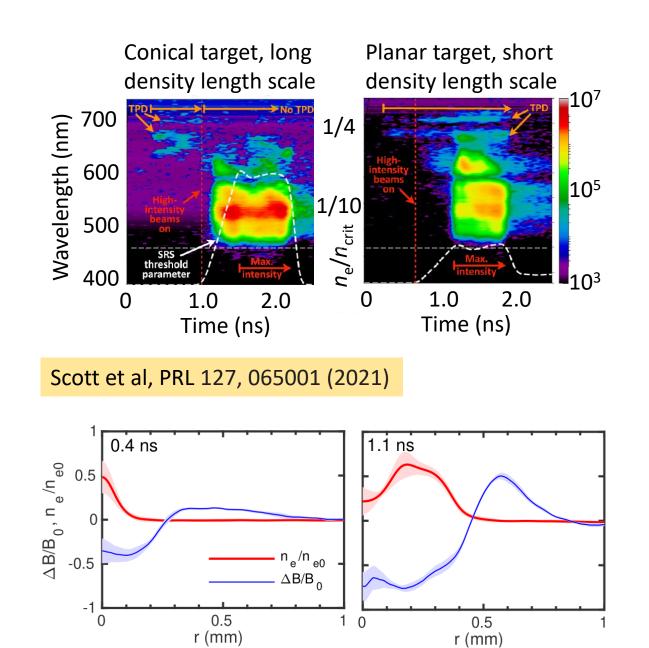


Stalk

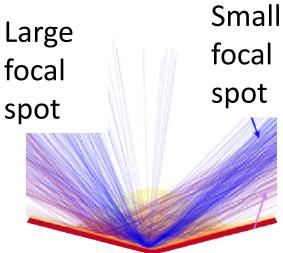
Glue

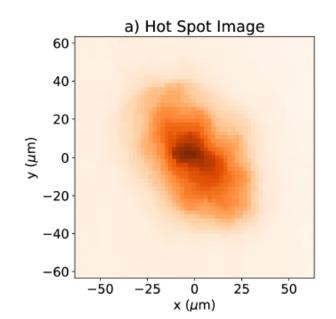
Experimental work related to IFE and UPLiFT


Nigel Woolsey York Plasma Institute School of Physics, Engineering and Technology University of York

UK IFE Meeting Imperial College London, 26-27 March 2024

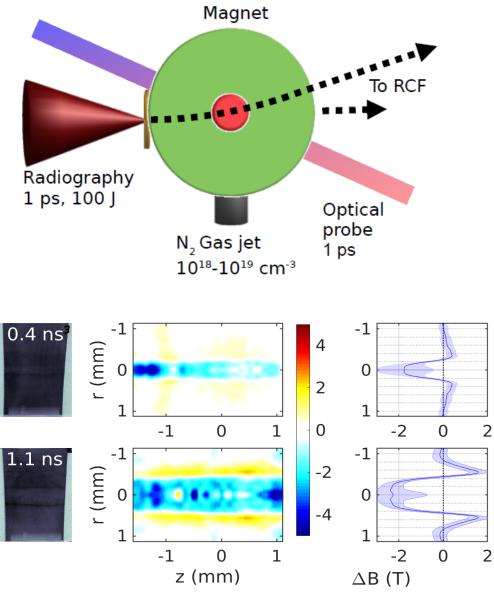
Four principal areas


- Laser-plasma instabilities
 - OMEGA, Vulcan, ELI-beams
- Heat transport
 - Vulcan, OMEGA, (short pulse?)
- Laser-drive imprint
 - EuroXFEL, LCLS-II (high rep)
- Implosion & hot spot energetics
 - OMEGA
- + Diagnostic developments
 Phase contrast imaging
 Hot electron characterisation



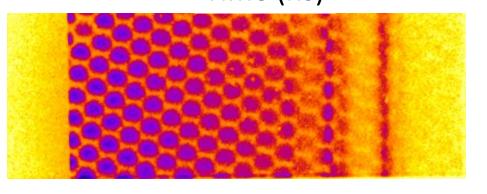
Arran et al., PRL 131, 015101 (2023)

Physics specific & integrated experiments


- Physics specific experiments
 - Access many more facilities test models but not necessarily in ICF conditions
 - Examples: Nernst, laser imprint
 - Some physics does not readily scale down
 - Examples: Laser-plasma instabilities, CBET etc
- Integrated experiments i.e., implosions
 - Primarily using OMEGA
 - Tuning new pulse shape concepts shock augmented ignition (SAI)
 - Hot spot energetics

Isolating Nernst at HED

- Tests of extended MHD in rad-hydro
 - Close to single physics study
- Under-dense plasma in cylindrical geometry
 - Average along the cylinder & Abel invert
- Requires multiple measurements
 - Electron density (interferometry)
 - Electron temperature (Thomson scatter)
 - Magnetic field (proton imaging)

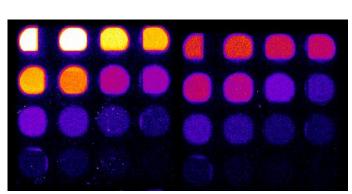

3 T

Spatially reconstruct hotspot electron temperature and density structure in time

- Monochromatic imaging of hot spot
 - Ideally spatial & temporal resolution 5 μ m, 10 ps
 - Currently 15 μm and 60 ps
- Temperature extracted from ratio maps at two photon energies, say 3 and 6 keV
- Density inferred from absolute emissivity
 - Extracted from an absolutely calibrated (time integrated) spectrometer and streak spectrum

2.0

Photon energy


Diagnostic development

• X-ray phase contrast imaging

X-ray Source: XFEL,Betatron, bremss, Kα

- Sub-MeV bremsstrahlung cannon
 - Development of a standard MeV cannon with multiple apertures & in-front filters

1000

-500

500

0 x (um)

y (um)

125 hits/pi 100

lineout re

500

x (um)

y (um)

-500

-100

Acknowledgements

PHYSICAL REVIEW LETTERS 131, 015101 (2023)

- Students and colleagues from
 - STFC (CLF)
 - York
 - Imperial
 - Warwick
 - Bordeaux (CELIA)
 - Rochester (LLE)
 - Pisa
 - Oxford
 - First Light Fusion

Measurement of Magnetic Cavitation Driven by Heat Flow in a Plasma

C. Arran[®],^{1,*} P. Bradford[®],^{1,†} A. Dearling[®],¹ G. S. Hicks[®],² S. Al-Atabi,² L. Antonelli[®],³ O. C. Ettlinger[®],² M. Khan[®],¹ M. P. Read[®],³ K. Glize,^{4,‡} M. Notley[®],⁴ C. A. Walsh[®],⁵ R. J. Kingham[®],⁶ Z. Najmudin[®],² C. P. Ridgers[®],¹ and N. C. Woolsey[®]¹

PHYSICAL REVIEW LETTERS 129, 195001 (2022)

Shock-Augmented Ignition Approach to Laser Inertial Fusion

R. H. H. Scott[®],^{1,*} D. Barlow[®],¹ W. Trickey[®],² A. Ruocco,¹ K. Glize,¹ L. Antonelli[®],² M. Khan[®],² and N. C. Woolsey[®]²

PHYSICAL REVIEW LETTERS 127, 065001 (2021)

Shock Ignition Laser-Plasma Interactions in Ignition-Scale Plasmas

R. H. H. Scott[®],^{1,*} K. Glize,¹ L. Antonelli[®],² M. Khan[®],² W. Theobald,³ M. Wei,³ R. Betti,³ C. Stoeckl,³ A. G. Seaton[®],⁴ T. D. Arber,⁵ D. Barlow[®],⁵ T. Goffrey[®],⁵ K. Bennett,⁵ W. Garbett,⁶ S. Atzeni[®],⁷ A. Casner,⁸ D. Batani,⁸ C. Li,⁹ and N. Woolsey[®]²