

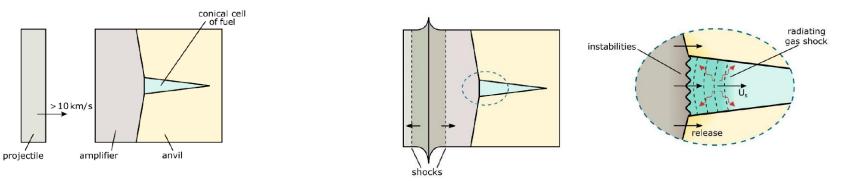
Optimising high-energy density physics in complex geometries for inertial fusion energy

Simon Bland, Francisco Suzuki-Vidal

UK Inertial Fusion Consortium Meeting Imperial College London 27th Mar 2024

sn.bland@imperial.ac.uk francisco.suzuki-vidal@firstlightfusion.com

Imperial College London


Machine Discovery

Engineering and Physical Sciences Research Council

AMPLIFI: AMplified PLasma Inertial Fusion Initiative

- Explore the physics underlying more complex IFE target designs
 - Move the complexity from the driver to the target
 - Significantly reduce the cost of the driver and power plant
- Initial ideas were based around 'projectile' fusion

But not wedded to gun/pulsed power driven projectiles – just single sided, shock-driven

- Physics driven exploring hydrodynamics, heat and radiation transfer between complex boundaries of different material states (often with large differences in Z). Experiments, simulations and theory hand in hand.
- Whilst driven by FLF business needs, results are open and applicable across HEDP / ICF e.g. high pressure EoS studies for planetary physics, heat transport in fast ignition experiments

Who are the staff involved?

Industry partners

Francisco Suzuki-Vidal (Business Lead) Claudia Gonzalez (Project Manager)

first light

Nick Hawker (CEO) Hugo Doyle, Nathan Joiner (HoDs)

Machine Discovery

Bijan Kiani Christina Sweeney

Academic partners

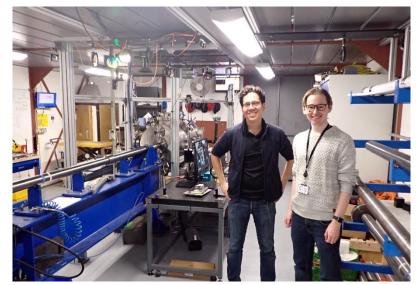
Imperial College London

Simon Bland (Academic Lead) Jerry Chittenden Sergey Lebedev Roland Smith Omar Matar Ellie Tubman, Grisha Kagan

(Physics & Engineering)

Dan Eakins Gianluca Gregori Sam Vinko

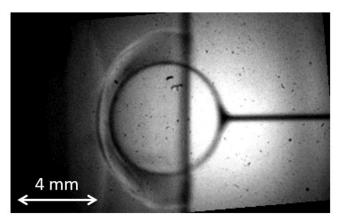
Andy Higginbotham Chris Ridgers Nigel Woolsey

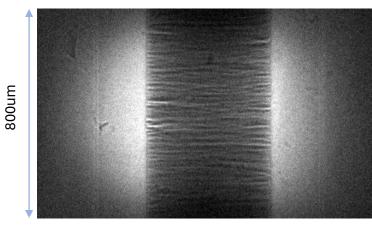

What is the status?

Funding for **business-led research in collaboration with academics**

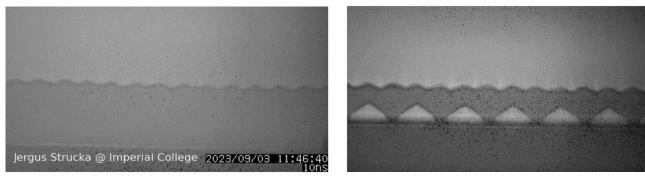
• Total of £12M over 5 years (£6M from EPSRC + £6M from FLF)

Funding includes

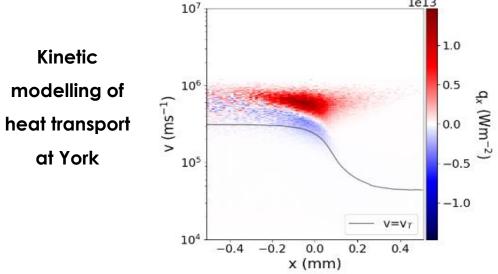

- 14x Postdoctoral researchers; 11 x PhD students; 40x Summer interns
- Helping build a new cohort of HEDS researchers in the UK
- Recruitment for Postdocs and PhDs has been progressing rapidly


- PhD, Oxford Engineering (Dan Eakins): "Characterisation of hydrodynamics and energy localisation in structured targets under hypervelocity impact"
- Postdoc, Imperial (Simon Bland): "Explore hydrodynamic instabilities, working with pulsed power experiments at ESRF, transfer measurements to gas gun experiments"
- Postdoc, Oxford Engineering (Dan Eakins): "Impact and Shock Mechanics"
- Postdoc, Imperial Chem. Eng. (Omar Matar): "Computational Fluid Dynamics to solve outstanding problems in FLF's Power Plant"
- 3 more postdocs start over next 2 months, 7 PhDs from October

Research started on July 1st 2023


Low pressure hydrodynamic flow experiments by York on FLF's gas gun

Electrothermal instability measurements at ESRF by Imperial team


1e13

Control

Suppressed

Experiments to suppress RMI instability – Imperial / LLNL

Some plans over the next 2 years

Heat transport	Radiation transport	Hydrodynamics
Heat transport coefficient calculations for AI, D2, PMMA (York/Imperial)	Explore Chimera code with Discovery Platform (Imperial/Machine Discovery)	Explore amplifiers at ESRF (Oxford Eng)
New platform for heat and radiation transport experiments (Imperial)	High-flux laser experiments (York/Imperial)	Liquid lithium flows for Power Plants (Imperial Chem Eng)
Plan experiments at LCLS and XFEL (Oxford Phys/York/Imperial)	Radiation transport coefficients using Open-MC (Imperial)	EoS models of PMMA under WDM conditions (Oxford Phys)

- Work with simulations to design platforms that isolate particular physics issues
- More 'joined up' experiments and simulation efforts, collaborating across partners to address stretch parameter space through WDM regime

Take advantage of FLF amplifiers

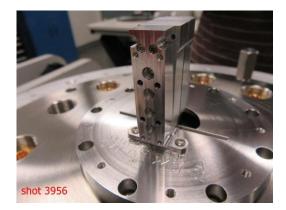
- Large increases in target pressure via combination of shock amplification via Mach reflections and shock multiplexing / stacking from layers of high and low impedance material
- Recently tested in Quartz EoS experiments via
 Z Fundamental Sciences Program at Sandia

On a 3 stage gas gun pressure of ~200 GPa obtainable

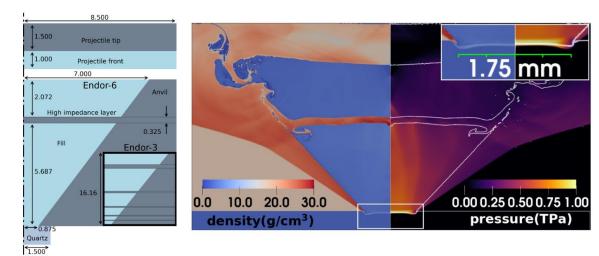
With Endor amplifier this increased to 1.1TPa over 0.75mm diameter with a hold time of 15ns

A Shock Amplification Platform For High-Energy-Density Physics: Accessing Terapascal Pressures On A Two-Stage Light-Gas Gun

J.W. Skidmore,* G.C. Burdiak, N. Niasse, V. Beltrán, H.W. Doyle, J.R. Allison, P. Allan, R.L. Barker, M. Betney, R. Bordas, D.A. Chapman, T. Edwards, E. Escauriza, N. Joiner, T. Kosteletos, J. Parker, J.D. Pecover, Z. Pešić, J.S. Read, M.P. Read, T. Ringrose, and N. Hawker *First Light Fusion, Oxford, OX5 1QU*


> T. Ao, A. Porwitzky, D. Dolan, B. Farfan, C. Johnson, and A. Hansen Sandia National Laboratories, Albuquerque, New Mexico 87185-1181 (Dated: February 18, 2024)

We present the "Endor" amplifier, a novel hydrodynamic pressure multiplier for high-energydensity physics studies. An equation of state platform using this technology has been developed for the study of terapascal pressures on two-stage light-gas guns. Validation experiments have demonstrated uniform pressures of 1.085 TPa in quartz over an area 0.75 mm in diameter with a temporal hold in excess of 15 ns. The temporal and spatial uniformity produced are suitable for high-precision equation of state measurements relative to a standard. This work substantially lowers the barrier of access to terapascal pressures by extending the capabilities of two-stage light-gas guns.


Directors shot - using Z accelerator, 4 amplifier experiments simultaneously in Feb 24

Pressures of 1.85TPa (new facility record for quartz)

No precursor / pre-heat

Enables HEDP even on small gas guns, and at larger facilities record pressures – guns, pulsed power and lasers

We're open to new collaborations!

with Vulcan upgrading, happy to help implement access to in house facilities across the Partnership